Surjective Isometries on Grassmann Spaces

نویسنده

  • FERNANDA BOTELHO
چکیده

Let H be a complex Hilbert space, n a given positive integer and let Pn(H) be the set of all projections on H with rank n. Under the condition dimH ≥ 4n, we describe the surjective isometries of Pn(H) with respect to the gap metric (the metric induced by the operator norm).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surjective Real-Linear Uniform Isometries Between Complex Function Algebras

In this paper, we first give a description of a surjective unit-preserving real-linear uniform isometry $ T : A longrightarrow B$,  where $ A $ and $ B $ are complex function spaces on compact Hausdorff spaces $ X $ and $ Y $, respectively, whenever ${rm ER}left (A, Xright ) = {rm Ch}left (A, Xright )$ and ${rm ER}left (B, Yright ) = {rm Ch}left (B, Yright )$. Next, we give a description of $ T...

متن کامل

Isometries on Extremely Non-complex Banach Spaces

We construct an example of a real Banach space whose group of surjective isometries reduces to ± Id, but the group of surjective isometries of its dual contains the group of isometries of a separable infinite-dimensional Hilbert space as a subgroup. To do so, we present examples of extremely non-complex Banach spaces (i.e. spaces X such that ‖ Id+T ‖ = 1+‖T ‖ for every bounded linear operator T...

متن کامل

Isometries on Spaces of Vector Valued Lipschitz Functions

This paper gives a characterization of a class of surjective isometries on spaces of Lipschitz functions with values in a finite dimensional complex Hilbert space.

متن کامل

A New Proof of the Noncommutative Banach-stone Theorem

Surjective isometries between unital C*-algebras were classified in 1951 by Kadison [K]. In 1972 Paterson and Sinclair [PS] handled the nonunital case by assuming Kadison’s theorem and supplying some supplementary lemmas. Here we combine an observation of Paterson and Sinclair with variations on the methods of Yeadon [Y] and the author [S1], producing a fundamentally new proof of the structure ...

متن کامل

Approximate Isometries on Finite Dimensional Banach Spaces by Richard

A map T: Ej —► E2 (E|, E2 Banach spaces) is an e-isometry if III T(X) T(Y)\\ \\X Y\\ I < e whenever X, Ye Ex. The problem of uniformly approximating such maps by isometries was first raised by Hyers and Ulam in 1945 and subsequently studied for special infinite dimensional Banach spaces. This question is here broached for the class of finite dimensional Banach spaces. The only positive homogene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012